
S

Registered by Australia Post Publica~on No. NBG6524

The Australian UNIX* systems User Group Newsletter

Volume 8 Number 3-4

August 1987

CONTENTS

AUUG General Information 3

Editorial 4

Softway Advertisement 5

Adelaide UNIX Users Group Information 6

Measuring Database Performance using the TP1 Benchmark7

Finland: Birch and Boat 21

From the ;login: Newsletter - Volume 12 Number 4 28

Call for Papers: POSIX Portability Workshop 29

Call for Papers: Winter 1988 USENIX Conference30

Call for Papers: Summer 1988 USENIX Conference31

Computer Graphics Workshop 32

Multiple Programs in One UNIX Process 33

tar vs. cpio 39

How to Write a UNIX Daemon 43

Book Review: The Design of the UNIX Operating System50

Book Review: A C Reference Manual 52

UUNET Progress Report 53

EUUGN Spring 1988 Conference Announcement 55

From the EUUGN Newsletter - Volume 7 Number 157

Unix Conference Reports 58 ¯

Atlanta Usenix, June 1986 58

, The Manchester Competition 74

Uniforum, January 1987 80

Notes on the Birth of the UNIX Ctdt 83

The X/OPEN show in Luxembourg 91

The CV Macros 92

GKS in C++ 93

An NRS Processor in C and the Future 105

AUUGN 1 Vol 8 No 3-4

From the EUUGN Newsletter - Volume 7 Number 2108

Packets vs. Circuits, in Two Centuries 109

Music: a Troff Preprocessor for printing music scores112

An Overview of the Native Language System 129

Grouse: Messages and Promps in Programs 138

Another Proposal for a News Scheme 148

EkV~G 150

Progress of ANSI/ISO C Standardisation 152

X/OPEN - What, Who, Why, When 157

EUnet 159

UNIX Clinc 162

Review of POSIX 164

Letters to the Editor 167

AUUG Membership Catorgories 171

AUUG Forms 173

Copyright © 1987. AUUGN is the journal of the Australian UNIX* systems User Group. Copying
without fee is permitted provided that copies are not made or distributed for commercial advantage and
credit to the source must be given. Abstracting with credit is permitted. No other reproduction is
permitted without prior permission of the Australian UNIX systems User Group.

* UNIX is a registered trademark of AT&T in the USA and other countries.

Vol 8 No 3-4 2 AUUGN

AUUG General Information

Memberships and Subscriptions

Membership, Change of Address, and Subscription forms can be found at the end of this issue.
¯

All correspondence conceming membership of the AUUG should be addressed to:-

The AUUG Membership Secretary,
P.O. Box 366,
Kensington, N.S.W. 2033.
AUSTRALIA

General Correspondence
All other correspondence for the AUUG should be addressed to:-

The AUUG Secretary,
Department of Computer Science,
Melbourne University,
Parkville, Victoria 3052.
AUSTRALIA

ACSnet: auug@munnari.oz

AUUG Executive

Ken McDonell, President

kenj@moncsbruce.oz
Department of Computer Science, Monash University, Victoria ’

Robert Elz~ Secretary

kre@munnari.oz
Department of Computer Science, University of Melbourne, Victoria

Chris Maltby, Treasurer

chris@gris.oz
S oftway Pty. Ltd., N. S .W.

Chris Campbell~ Committee Member

chris@olisyd.oz
Olivetti Australia, N.S.W.

Piers Lauder, Committee Member (Newly Elected)

piers@basser.cs.su.oz
Basser Department of Computer Science, Sydney University, N.S.W.

John Lions~ Committee Member

johnl@elecvax.oz
School of Electrical Engineering and Computer Science, University of New South Wales, N.S.W.

Tim Roper~ Committee Member

timr@labtam.oz
Labtam Limited, Victoria

Next AUUG Meeting
The next meeting will be held in Melbourne during February 1988.
Futher details will be provided in the next issue.

AUUGN 3 Vol 8 No 3-4

AUUG Newsletter

Editorial

I am disappointed that the majority of this issue is reprints from the USENIX and EUUG Newsletters. I
would prefer that it had more Australian content. I will continue to encourage people to write articles
for the Newsletter and hope this produces a better result in future issues. Please remember that articles
do not have to about UNIX itself but applications that run under UNIX.

REMEMBER, if the mailing label that comes with this issue is highlighted, it is time to renew your
AUUG membership.

AUUGN Correspondence
All correspondence reguarding the AUUGN should be addressed to:-

John Carey
AUUGN Editor
Computer Centre
Monash University
Clayton, Victoria 3168
AUSTRALIA

ACSnet: auugn@monul.oz

Phone: +61 3 565 4754

Contributions
The Newsletter is published approximately every two months. The deadline for contributions for the
next issue is Friday the 16th of October 1987.

Contributions should be sent to the Editor at the above address.

I prefer documents sent to me by via electronic mall and formatted using troff-ram and my footer
macros, troff using any of the standard macro and preprocessor packages (-ms, -me, -mm, pic, tbl, eqn)
as well TeX, and LaTeX will be accepted.

Hardcopy submissions should be on A4 with 35 mm left at the top and bottom so that the AUUGN
footers can be pasted on to the page. Small page numbers printed in the footer area would help.

Advertising
Advertisements for the AUUG are welcome. They must be submitted on an A4 page. No partial page
advertisements will be accepted. The current rate is AUD$ 200 dollars per page.

Mailing Lists
For the purchase of the AUUGN mailing list, please contact Chris Maltby.

Disclaimer
Opinions expressed by authors and reviewers are not necessarily those of the Australian UNIX systems
User Group, its Newsletter or its editorial committee.

Vol 8 No 3-4 4 AUUGN

a Techway company

for

~ UNIX System V

[~ Documentor’s Workbench 2.0
- and various back-end drivers
- PostScript support of plain text
- support for graphs and images

~ Ports & Device Drivers

~ Intelligent Benchmarking

I~ SUN-Ill (ACSnet) + installation

~ Biway - Bi-directional modem software for System V
and 4bsd

I~’ Courses:

- Beginner’s Workshop

- Fast start to UNIX

- System Administrators’ workshop

~" Technical Backup

- and all sorts of interesting software development.

Softway Pty Ltd. (Incorporated in NSW)
20 Chalmers St, Strawberry Hills, NSW.

PO Box 305, Strawberry Hills, NSW 2012.
(02) 698 2322 Fax (02) 957 6914

AUUGN 5 Vol 8 No 3-4

Adelaide UNIX Users Group

The Adelaide UNIX Users Group has been meeting on a formal basis for 12 months.
Meetings are held on the third Wednesday of each month. To date, all meetings have
been held at the University of Adelaide. However, it was recently decided to change
the meeting time from noon to 6pm. This has necessitated a change of venue, and, as
from April, meetings will be held at the offices of Olivetti Australia.

In addition to disseminating information about new products and network status, time
is allocated at each meeting for the raising of specific UNIX related problems and for
a brief (15-20 minute) presentation on an area of interest. Listed below is a sampling
of recent talks.

D. Jarvis
K. Maciunas
R. Lamacraft
W. Hosking
P. Cheney
J. Jarvis

"The UNIX Literature"
"Security"
"UNIX on Micros"
"Office Automation"
"Commercial Applications of UNIX"
"troff/ditroff"

The mailing list currently numbers 34, with a healthy representation (40%) from
commercial enterprises. For further information, contact Dennis Jarvis
(dhj@aegir.dmt.oz) on (08) 268 0156.

Dennis Jarvis,
Secretary, AdUUG.

Dennis Jarvis, CSIRO, PO Box 4, Woodville, S.A. 5011, Australia.

PHONE: +61 8 268 0156
UUCP: {decvax,pesnta,vax135} !mulga!aegir.dmt.oz!dhj
ARPA: dhj %aegir.dmt.oz! dhj@ seismo.arpa
CSNET: dhj@aegir.dmt.oz

Vol 8 No 3-4 6 AUUGN

MEASURING DATABASE PERFORMANCE
USING THE TP1 BENCHMARK

Ken J. McDonell
Department of Computer Science

Monash University
Clayton, Victoria 3168, AUSTRALIA

Acsnet: kenj@moncsbruce.oz

ABSTRACT

This note reports on some performance experiments conducted with a commercially available
relational database management system (let’s call it DBMS-R) in conjunction with the TP1
benchmark[I]. These tests are of particular interest given the popularity of TP1 as a de facto
standard for measuring on-line transaction processing throughput. This paper assumes the
reader is familiar with the TP1 benchmark; full details may be found in[1].

In all cases, the tests were run on an unloaded Unix1 machine in multi-user mode (with the
usual assortment of daemons, especially the Ethernet ones). Several Unix machines were
used, all from the one vendor’s model range; they shall be referred to as Model-l, Model-2
and Model-4 (model numbers crudely approximate to relative raw performance).

Except where stated to the contrary (for some Model-4 tests), the filesystems all had a default
configuration with a block size of 16K bytes.

The same brand of disk drives was used in all tests.

System and Database Configurations
Model-4

The Model-4 processor had 128 Mbytes of real memory, and 7208 buffers in the file system
cache.

After several experiments, the following database configuration was used with logging, the
DBMS-R system catalogs and the relations spread across 4 physical disk drives. Within the
parameter set explored, this configuration gives the best performance amongst those deemed
realistic and "honest".

1. Unix is a trademark of AT&T Bell Laboratories.

AUUGN 7 Vol 8 No 3-4

Relation Size Access Method Disk Filesystem
DBMS-R catalogs diskl default
transaction log disk3 default
account 100000 hash unique disld 2K block size
teller 1000 hash unique diskl 2K block size
branch 100 hash unique diskl 2K block size
history 0-21500 unstructured disk4 default

Note that the filesystems for the randomly accessed relations have been reconfigured to have
block sizes of 2K bytes; refer to Point 8 in Section 4 for a full discussion as to why.

1.2 Model-2

The Model-2 processor had 64 Mbytes of real memory, and 2293 buffers in the file system
cache.

Based upon the Model-4 experiences and a small number of further experiments, the
following database configuration was used with logging, the DBMS-R system catalogs and
the relations spread across 3 physical disk drives.

Relation Size Access Method Location
DBMS-R catalogs disk0
transaction log diskl
account 100000 hash unique disk2
teller 1000 hash unique disk2
branch 100 hash unique disk0
history 0-15400 unstructured diskl

1.3 Model-1

The Model-1 processor had 32 Mbytes of real memory, and 1146 buffers in the file system
cache.

The following database configuration was used with logging, the DBMS-R system catalogs
and the relations spread across 2 physical disk drives.

Relation Size Access Method Locatio
DBMS-R catalogs disk0
transaction log diskl
account 100000 hash unique disk0
teller 1000 hash unique disk0
branch 100 hash unique disk0
history 0-8200 unstructured disk0

2. TP1 Performance

The measured mean TP1 performance (in transactions per seconds, TPS) with varying degrees
of concurrency is shown in the following graph.

Vol 8 No 3-4 8 AUUGN

TPS

12-

10-

u

w

~/ Model-1

I1 ~-’~

Model-4

I I I
5 10 15

Concurrent Transaction Streams

Peak TP1 throughput2 is as follows.

CPU Concurrency Peak TP1 (TPS) Relative to Model-1
Model-4 3 12.2 1.87
Model-2 4 9.5 1.46
Model- 1 2 6.5 1.00

3. Performance Analysis and Other Tests
Across the hardware range different resources are evidently limiting TP1 throughput. The
following numbers represent average figures gathered using rnpstat and dkstat on a repeated
run for the optimal degree of concurrency. Note that the column headed "Disk Xfers" is for
the most heavily used drive only.

CPU Concurrent Processor(s) System Calls Context Switches ¯ Disk Xfers
Streams % Idle Time (per sec) (per sec) (per sec)

Model-4 3 43 1391 308 24, disk2
Model-2 4 48 1079 267 18, disk2
Model- 1 4 13 774 134 16, disk0

Scrutiny of the mpstat statistics for the Model-1 reveal that it is running close to maximal
CPU utilization, with bursts of high CPU idle time and near-peak disk rates coinciding with
sync activity. Short of either spreading the disk buffer cache flushing more uniformly with
time, or re-engineering some major DBMS-R component (e.g. the IPC mechanism or the lock
manager), little improvement can be expected. However, better throughput should be

2. There may be some marginal improvement at degrees of concurrency between the measured points, but near
the optimal throughput, e.g. 3 concurrent transaction streams for a Model-1 or 5 concurrent streams for a
Model-2.

AUUGN 9 Vol 8 No 3-4

achievable because the very high system time (48%, compared to 40% user time) suggests
inefficient system call patterns or poorly implemented system code.

At the other extreme, the Model-4 has plenty of unused CPU capacity and disk bandwidth,
but the throughput is being constrained by a "convey" phenomenon caused by lock conflicts
for the last page of either or both the transaction log and the "history" relation.

Further insight into TP1 performance may by gained from consideration of the following
hypothetical transactions,

TI" Amend a tuple in relation R where the key = K

T2" Append a tuple to relation R

A TP1 transaction is composed from a set of smaller updates each being similar to either T1
or T2. Since T1 and T2 are both simpler than TP1, studies of T1 and T2 are more easily
conducted, but the results may be used to predict maximal TP1 performance.

Initially we are interested in minimizing disk activity to concentrate on other performance
factors - consequently all T1 and T2 tests run with transaction logging disabled. For T1 we
can further minimize disk UO by using a hashed access method. For T2 the unstructured
access method is chosen to model transaction logging activity, and possibly the updating of
the TP1 "history" relation.

If one stream of identical T1 transactions is run, statistically reliable measures may be made
without any contention. Running several concurrent T1 streams allows investigation of
throughput limits in the following interesting cases,

1. No conflict between transactions (all streams use a different value of the key K chosen to
ensure that the corresponding tuples map to different physical database pages).

2. Pathological conflict (all streams use the same key K).

For T2 transactions, multiple streams updating the same relation are always in conflict over
the lock for the last physical page of the relation.

The following graphs illustrate the maximum achievable throughputs for T1 (with and without
conflict) and T2.

Model-4 Maximal Throughput

80-

70-

Genetic Updates
per Second 60-

50-

40-

T1 - No Conflict

T2

T1 - Conflict

I I I
5 10 15

Concurrent Transaction Streams

Vol 8 No 3-4 10 AUUGN

Generic Updates
per Second

65-

60-

55-

50-

45-

Model-2 Maximal Throughput

T1 - Conflict ~~.

I I I
5 10 15

Concurrent Transaction Streams

Genetic Updates
Per Second

55-

50-

45-

40-

35-

30-

Model-1 Maximal Throughput

I I I
5 10 15

Concurrent Transaction Streams

Since each TP1 transaction consists of 2 T2 sub-transactions and 3 T1 sub-transactions (with
conflict varying from none to slight), the following upper bounds on TP1 performance can be
computed. These bounds are important because they are based upon no logging and minimal
disk !/O - we are measuring principally the DBMS passage time per transaction, and in
particular the peak rate at which the lock manager can handle transactions and resolve
conflicting lock requests. Even if ideal situations prevail during a TP1 run and the additional
logging and disk I/O activities can be overlapped with processing of concurrent transactions,
the TP1 throughput cannot exceed these upper bounds.

AUUGN 11 Vol 8 No 3-4

CPU TP1 Minimum Time TPS TPS observed
Upper Bound Absolute % Bound

Model-4 2/60 + 3/75 = 0.073 13.6 12.2 89
Model-2 2/57 + 3/55 = 0.089 .11.2 9.5 85
Model- 1 2/45 + 3/37 = 0.13 7.9 6.5 82

4. Benchmarking Methodology

Several "pitfalls" and problems associated with TP1 measurements were uncovered. This list
should be used as a checklist during TP1 measurements for other database management
systems, and to verify the extent to which competing performance figures may be honestly
compared.

o For TP1 all tuples should contain 100 data bytes (except for the "history" relation
which has 50 data bytes per tuple). Test databases with tuples of non-standard size can
produce significantly different performance.

2. The size of each relation is also defined for a 100 TPS system to be as follows.

Relation Tuples Size
branch 1,000 100 Kbyte
teller i0,000 1 Mbyte
account 10,000,000 1 Gbyte
history 200,000,000 10 Gbyte

.

For a 10 TPS system (e.g. any machine in the range under investigation), these numbers
should be divided by 10. However this leads to several problems.

a,

b.

The "account" relation is 100 Mbytes of data. To achieve acceptable random
access a relatively low space utilization is required (perhaps as low as 40% for some
implementations), so this can easily require 200 Mbytes - a little too big for
comfort, as the test database loading may take several days! Pragmatic
considerations then typically reduce this relation to 100,000 tuples (1/100 scaling),
justified by assertions that performance for the larger relation size would be
comparable; this is reasonable if access time for "accounts" tuples is not the
limiting performance factor or the access method provides access times independent
of relation size (e.g. a good hashing addressing scheme) and provided there is no
"cheating" (e.g. the whole database could, in theory, be loaded into the available
real memory on even the smallest system in the range under consideration).

There is no published evidence to suggest anyone accumulates 1 Gbyte of "history"
data (for a 10 TPS system) before they start the TP1 benchmark. Common
approaches include starting from zero, or some arbitrary token number (e.g. 10000)
of tuples.

The organization of the "history" relation is subject to considerable variation.
possibilities were investigated.

Two

a. A sequential file. Realistic, but causes increased lock contention for the last
physical page because every TP1 transaction must append a tuple to this table.

b. A hashed file. Reduces physical page lock conflict, but this is not a rational way to
build a chronological record of updates. Pragmatic issues that must be addressed

Vol 8 No 3-4 12 AUUGN

include periodic reorganization (the growth is unbounded and eventually the pages
become so full that the increased update times dominate total transaction time,
thereby negating all gains from reduced l~xzk contention), concurrent sorting and
archival of tuples to some non-volatile storage (no attempt has been made to include
this overhead in the DBMS-R measurements).

The following graph illustrates the effects of this choice. All configuration parameters
are as specified in Section 1.1, except the default, rather than tuned filesystem was used
and in the hashed case the "history" table was initially loaded with 10,000 dummy
tuples at a fillfactor of 17% (after the last run there were 28,000 tuples and the fillfactor
was 50%).

Effect of Access Method on the "history" Relation

TPS

12-

10-

m

~

Unstructured

I I I
5 10 15

Concurrent Transaction Streams

Despite the apparent better performance of the hashed scheme, all other tests reported in
this document use the unstructured scheme because this organization could be sustained
over an extended period without expensive reorganization.

Elsewhere, some TP1 results have been gathered using several "history" relations (e.g.
partioned by branch number) to spread the activity and hence reduce the contention
conflict. This scheme is technically feasible and perfectly acceptable, but was not
employed in these tests because no performance improvement could be expected all the
while transaction logging was imposing a second convoy regime upon transaction
execution.

4. Make sure transaction logging is enabled. This is not an optional part of TP1.

The following graph illustrates how impressive, but bogus, performance can be achieved
by disabling transaction logging. Apart from logging, all configuration parameters in
both runs are as specified in Section 1.1 except the default rather than tuned filesystem
was used.

AUUGN 13 Vol 8 No 3-4

TPS

12-

10-

m

~

Effect of Transaction Logging

No Loggi gn -~

Logging

I I I
5 10 15

Concurrent Transaction Streams

0

.

.

In the absence of any special precautions, concurrent TP1 transactions can deadlock
when share locks are promoted to exclusive locks for each amended tuple in "account",
"teller" and "branch". TP1 testbeds must ensure deadlock is either prevented or
aborted transactions are resubmitted.

In a more general vein, the transaction implementation should include an error handling
mechanism that at least detects when an update is not completed as expected.

Measuring TPS rates over very short times produces a "burst" TPS rating that cannot be
sustained. In such a short interval, all writes may have been cached and sync may not
have run - this makes disk writes appear much cheaper than they really are! For
example if each stream consisted of 100 TP1 transactions and the degree of concurrency
varied between 1 and 16 streams, then the elapsed times (across a Model-4 and Model-l)
would be in the range 10 seconds to 5.4 minutes. Figures collected in this manner
cannot legitimately be compared. For all results presented in this report, the aggregate
number of transactions across all concurrent streams remains constant (1536) and
elapsed running times are in the range 2.5 to 5.0 minutes.

Similarly, there is some freedom in the interpretation of the TPS rate, as follows

1. The number of transactions completed, divided by the sum of the running times for
each transaction stream.

2. The number of transactions completed, divided by the total running time for all
transaction streams (from the start of the first one to the end of the last one).

The former measure produces marginally higher values, but is also more representative
of steady-state transaction processing. This is the measure used throughout this report.

The TP1 throughput varies dramatically with the degree of transaction concurrency.
Throughout these experiments, this parameter has been considered an independent
variable whose value may be chosen to maximize TP1 throughput for a particular choice
of all other configuration parameters. Not all TP1 measurements performed by others
are quoted in this way, so comparisons may be misleading.

Vol 8 No 3-4 14 AUUGN

,

Justification for choosing the degree of concurrency to maximize TP1 throughput is
relatively straight forward, based upon an application architecture in which a
communications front end process (or processes) manages the terminals, gathers
transaction details and submits transactions to one of N queues. Each transaction queue
is serviced by a dedicated server which runs one transaction to completion before starting
the next transaction. Such a scheme supports fluctuating transaction arrival rates with
constrained DBMS concurrency to achieve maximal throughput.

Tuning the UNIX filesystem can make a significant difference. Transaction logging and
the "history" relation are both fundamentally write-only sequential files with small
logical record sizes - big filesystem blocks help here. The other relations are all subject
to random read and re-write, again with small logical record sizes - small filesystem
blocks are optimal. The following graph illustrates the effects of this tuning for a
Model-4 configuration (see Section 1.1 for parameters) as the filesystems containing the
randomly accessed relations are varied from the default 16K block size configuration
through to the optimal (for TP1) 2K configuration.

Effect of Filesystem Tuning

12-

10-
TPS

~

~

16K Blocks
" ’*"~’~"~ ~ 4K Blocks

8K Bl~ks

5 10
Concurrent Transaction Streams

,

AUUGN

Care must be taken to see what DBMS tuning options have been invoked. For TP1,
query optimization is irrelevant, but selection of other parameters can have a major
impact, e.g. choice of lock granularity, lock promotion scheme, random access storage
method, database buffer cacheing, etc.

Relevant options for DBMS-R throughout these tests are,

® Enable transaction logging.

® Automatically promote read locks to exclusive locks at the time of granting.

o Explicity call the DBMS to delimit each TP1 transaction.

® Precompile queries to minimize parsing and optimization overheads.

Other tuning options may have obscure effects. For example, the number of data pages
cached in each DBMS-R process may be controlled. The local cache may reduce data
page reads, but incurs a synchronization overhead as additional locks for cached pages
must be acquired and released. The following graphs illustrate the effects of setting the

15 Vol 8 No 3-4

number of cached pages to zero on a Model-2 for the TP1 and T2 runs.

Reducing the local cache size to zero improves T2 performance when there is more than
one stream of transactions, since consecutive appends within a single stream will be
directed to different data pages and page cacheing incurs the lock overhead for no gain.
When there is no concurrency, the poorer performance results from repeated reads of the
same (last) page of the relation that is avoided when cacheing is employed.

The situation for TP1 is less clear. No obvious explanation exists for the poorer
performance in the un-cached case at near optimal levels of concurrency.

TPS

m

m

m

~

TP1 Throughput

default cache

I I
5 10

Concurrent Transaction Streams

Generic Updates
per Second

65-

60-

55-

50-

T2 Throughput

.n.o cache

default cache

I I I
5 10 15

Concurrent Transaction Streams

10. The original TP1 benchmark specification includes a number of aspects that are often
ignored due to difficultly in implementation or inability to support the relevant facility.
None of these factors have been included in the measurements presented in this report.

Vol 8 No 3-4 16 AUUGN

Terminal I/O. Assumed to be in block mode, 100 bytes (10 fields) of input (the
transaction details) and 100 bytes of output (response).

® X.25 communications between teller temainals and the host.

15% of transactions are for accounts held at branches different to the branch (teller)
at which the transaction is generated.

Duplexed transaction logging.

At least one second response time for 95% of the transactions.

Making it All Go Faster
Faced with ample CPU power and disk bandwidth, but comparatively low TPS rating, it
becomes necessary to identify where and how transactions are in conflict in such a manner
that serious interference results. To add to the gloom, system CPU usage is always
significantly higher than user CPU usage. Possible candidates include

.
Excessive system calls in either the DBMS-R process or the run-time library attached to
the application process.

2. Poor IPC protocols and/or implementation between the application and the DBMS-R
processes.

.

5ol IPC

The DBMS-R lock manager.

By surgically implanting a monitor routine below the DBMS-R run-time library in an
application process, it was possible to gather information on the pipe-based IPC protocols
between the DBMS-R process and the T2 sub-transaction. This revealed the following facts.

All messages are 256 bytes long.

After the initial hand-shaking (3 messages), there are 2 messages (one send, one
response) for each embedded query statement. Statement precompilation carries a further
overhead of 2 messages the first time the statement is executed.

This would suggest approximately 14 messages per TP1 transaction.

Using the MUSBUS[2] context1 test as a basis, two processes running on a Model-2 are able
to exchange 20,000 messages in 34.4 seconds (1.2user + 21.5sys). Message exchange alone
would therefore limit TP! performance for one transaction stream to a peak rate of 40 TPS.

The overhead in message processing is clearly not the limiting resource, although in
conjunction with some other computationally intensive activity (e.g. the DBMS-R process or
the lock manager) it may well represent a major contributor to the high relative system CPU
time and lower than expected transaction throughput.

5.2 System Call Behaviour
Using a profiled kernel on an Model-2, 4 streams of T2 transactions were run. The following
system call frequencies were observed and expected (only calls with frequencies over 500
shown).

AUUGN 17 Vol 8 No 3-4

Frequency
System Call Explanation

Observed Expected
ioctl 17267 7000 Based upon 3 lock requests and 1 lock release

per T2 transaction.
lseek 6422
write 5197 4700 3100 for pipe-based IPC messages, 1600 disk

writes.
read 3423 3100 Pipe-based IPC messages.
sigblock 3333
close 576

Worthy of note here is the unexpectedly higher number of ioctl Calls, and large numbers of
totally unexpected calls to lseek, sigblock and close.

5.3 Kernel Profiling
In an attempt to identify the reasons for such high system CPU time, three tests were
performed with a profiled kernel.

Case A T2 with 1 and 4 concurrent streams on a Model-2. The results with one concurrent
stream are not very interesting (each CPU is 50% idle), so the table below includes
only the 4 stream case.

Case B TP1 with 3 concurrent streams on a Model-2.

Case C TP1 with 4 concurrent streams on a Model-4.

The following table summarizes the main contributors, with resource consumption shown in
absolute terms and as a percentage of the system CPU time accumulated below the system
call entry (i.e. excluding idle and interrupt handling time).

The times were extracted using gprof and classified as follows.

DBMS-R Lock Driver
Everything in ioctl and below; there are effectively no calls to ioctl for devices other
than the DBMS-R lock manager.

File and Pipe I/O
Calls to rwuio via read and write are aggregated, and then usage attributed to file or
pipe I/O according to the frequency of calls to vno_rw and pipe_rw respectively.

Case DBMS-R Lock
Driver Pipe I/O File I/O

A 23.58 (40%) 12.94 (22%) 8.50 (14%)
B 61.55 (23%) 87.52 (33%) 52.18 (20%)
C 82.75 (23%) 134.47 (38%) 64.62 (18%)

The execution time per request in the DBMS-R lock manager depends upon the
degree of lock conflict and varies from 0.5 msec/call in Case A (no concurrency),
through 1.1 msec/call (Case A with 4 streams and Case B), to 1.5 msec/call in Case
C. This suggests that for TP1 the minimum time that a non-shared lock may be
held (e.g. exclusive access to the transaction log) is of the order of 3 msec, or some
350 lock request-release cycles per second. This cannot produce the convoy effect,

Vol 8 No 3-4 18 AUUGN

because the observed peak rate in the order of 12 TPS means the lock on the
resource that is causing the convoy must be held for about 90 msec by each
transaction. Possible explanations include,

1. The DBMS-R process does an enormous amount of work between acquiring the
lock and releasing it.

.
There is some major logical flaw in the lock manager that is causing the
process making a lock request to be blocked for no apparent good reason,
thereby adding considerable real-time delay to each lock request and/or release
that appears as CPU idle time, rather than accumulated CPU time in the lock
manager.

The first explanation seems more plausible, but it has not been possible to prove or
disprove either hypothesis.

6. Concluding Recommendations

The following issues must be addressed before DBMS-R TP1 performance on the studied
machines can be expected to demonstrate dramatic improvement.

.
The cause of the "convey" mechanism must be clearly identified. Until the passage
time for use of this critical resource is reduced, or removed the Model-2 and Model-4
will continue to demonstrate throughput that degrades above a concurrency level of about
4 and at the same time leaves considerable CPU idle time (note that disk bandwidth will
not become an issue of any relevance unless there is a significant increase in overall
transaction throughput).

Some possible techniques to help in this area include,

Multiplex the transaction log, e.g. one log per DBMS-R process with centralized
co-ordination (system-wide log) only occurring when the DBMS-R process starts-up
and shuts-down, rather than at each transaction commit.

For sequential files (e.g. a unstructured relation, or the transaction log) consider
using atomic append-writes (as supported in the kernel, i.e. open the file with mode
O_APPEND) in preference to DBMS-level lock protocols and lseek before each
write.

.

Avoid deadlock detection overhead for blocked requests to lock the transaction log -
transactions blocked here should be waiting for a short time with no chance of
deadlock, unless DBMS-R is in the midst of a pathological crisis from which it is
unlikely to recover!

Improved pipe performance or a more efficient IPC mechanism between the DBMS-R
and the application proceses. By itself, this cannot be expected to improve performance
(except on the Model-i), because this IPC activity is almost certainly outside the scope
of the interaction responsible for the convey phenomenon. However, if the serial
execution imposed by the convey were relaxed, then system CPU time spent supporting
pipe I/O would become a major component limiting throughput as CPU utilization nears
saturation.

At a more general level, this study has highlighted a number of potential weakness with
current TP1 specifications and implementation that should act as a warning to vendors and
purchasers alike - be very careful if you are using TP1 results to influence decisions in
respect of critical resources like people and money.

AUUGN 19 Vol 8 No 3-4

